Novel Victorivirus from a Pakistani Isolate of Alternaria alternata Lacking a Typical Translational Stop/Restart Sequence Signature

2019 
The family Totiviridae currently contains five genera Totivirus, Victorivirus, Leishmavirus, Trichomonasvirus, and Giardiavirus. Members in this family generally have a set of two-open reading frame (ORF) elements in their genome with the 5′-proximal ORF (ORF1) encoding a capsid protein (CP) and the 3′-proximal one (ORF2) for RNA-dependent RNA polymerase (RdRp). How the downstream open reading frames (ORFs) are expressed is genus-specific. All victoriviruses characterized thus far appear to use the stop/restart translation mechanism, allowing for the expression of two separate protein products from bicitronic genome-sized viral mRNA, while the totiviruses use a −1 ribosomal frame-shifting that leads to a fusion product of CP and RdRp. We report the biological and molecular characterization of a novel victorivirus termed Alternaria alternata victorivirus 1 (AalVV1) isolated from Alternaria alternata in Pakistan. The phylogenetic and molecular analyses showed AalVV1 to be distinct from previously reported victoriviruses. AalVV1 appears to have a sequence signature required for the −1 frame-shifting at the ORF1/2 junction region, rather than a stop/restart key mediator. By contrast, SDS–polyacrylamide gel electrophoresis and peptide mass fingerprinting analyses of purified virion preparations suggested the expression of two protein products, not a CP-RdRp fusion product. How these proteins are expressed is discussed in this study. Possible effects of infection by this virus were tested in two fungal species: A. alternata and RNA silencing proficient and deficient strains of Cryphonectria parasitica, a model filamentous fungus. AalVV1 showed symptomless infection in all of these fungal strains, even in the RNA silencing deficient C. parasitica strain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    13
    Citations
    NaN
    KQI
    []