Genetic and Epigenetic Down-regulation of MicroRNA-212 Promotes Colorectal Tumor Metastasis via Dysregulation of MnSOD

2013 
Background & Aims Altered functions of microRNAs (miRNAs) have been associated with colorectal cancer (CRC). miR-212 is transcribed from a stable intron of a non-protein coding gene, and is reportedly down-regulated in different tumor types. We investigated the role of miR-212 in colorectal carcinogenesis and progression. Methods We analyzed the expression of miR-212 by real-time polymerase chain reaction (PCR) analysis of colorectal cell lines and 180 paired tumor samples and surrounding healthy tissue. We overexpressed and knocked down miR-212 in CRC cell lines and assessed the in vitro effects. We also studied the effects of miR-212 overexpression on metastasis of tumors grown from HCT116 cells in nude mice. Results Overexpression of miR-212 inhibited CRC cell migration and invasion in vitro and formation of intrahepatic and pulmonary metastasis in vivo. We identified manganese superoxide dismutase ( MnSOD ) messenger RNA as a direct target of miR-212, and observed an inverse correlation between the level of miR-212 and MnSOD protein in colorectal tumor samples. MnSOD was required for down-regulation of epithelial markers and up-regulation of mesenchymal markers in CRC cells, indicating that it promoted the epithelial−mesenchymal transition. Overexpression of miR-212 reduced the levels of MnSOD to block the epithelial−mesenchymal transition process. Loss of heterozygosity and promoter hypermethylation each contributed to the down-regulation of miR-212. Reduced levels of miR-212 were associated with a more aggressive tumor phenotype and short disease-free survival times of patients ( P  = .0045; overall survival, P  = .0015). Conclusions miR-212 is down-regulated in human CRC tissues via genetic and epigenetic mechanisms. miR-212 might prevent tumor progression by targeting MnSOD messenger RNA; reduction of miR-212 could be a prognostic marker for patients with CRC. miR-212 and MnSOD might also be therapeutic targets for cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    92
    Citations
    NaN
    KQI
    []