An improved drop casting electrochemical strategy for furosemide quantification in natural waters exploiting chemically reduced graphene oxide on glassy carbon electrodes.

2020 
This work exploits the applicability of a chemically reduced graphene oxide (CRGO) modification on the electrochemical response of a glassy carbon electrode (GCE) for the first-time sensitive determination of furosemide in natural waters. The batch injection analysis (BIA) is proposed as an analytical method, where CRGO-GCE is coupled to a BIA cell for amperometric measurements. Acetate buffer (0.1 μmol L-1, pH 5.2) was used as the background electrolyte. The modification provided an increase in sensitivity (0.024 μA/μmol L-1), low limit of detection (0.7 μmol L-1), RSD (< 4%), and broad linear range (1-600 μmol L-1). Recovery tests performed in two different concentration ranges resulted in values between 89 and 99%. Recovery tests were performed and compared with high-performance liquid chromatography (HPLC) with UV-Vis detection using Student's t test at a 95% significance level, and no significant differences were found, confirming the accuracy of the method. The developed method is proven faster (169 h-1) compared with the HPLC analysis (5 h-1), also comparable with other flow procedures hereby described, offering a low-cost strategy suitable to quantify an emerging pharmaceutical pollutant. Graphical abstract.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []