Numerical Modeling of Nondestructive Testing of Various Conductive Objects inside Metal Enclosures Using ELF/VLF Magnetic Fields

2021 
Nondestructive evaluation of various conductive objects through metal enclosures is investigated by using ELF/VLF magnetic induction fields in detailed simulations. ELF/VLF magnetic fields (<30 kHz) have a unique ability to penetrate highly conductive or permeable shields. Using a magnetic dipole source antenna, objects hidden inside a metal enclosure are imaged via examining distortions to the field outside the enclosure. The field distortion is parametrically studied by varying the size, conductivity, and permeability of the hidden objects. Furthermore, the importance of the conductivity of the enclosure itself is investigated using both low (106 S/m) and high (108 S/m) conductivity metallic shields. It is shown that the responses are quite sensitive to the object and shield parameters; both qualitative and quantitative properties of the field distortions are described in detail. The simulation results suggest that properties of hidden conductive or permeable objects, over a relatively wide range of parameters (both geometry and material), can be inferred nondestructively using ELF/VLF magnetic induction fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []