Electronic Structure of Metallophthalocyanines, MPc (M = Fe, Co, Ni, Cu, Zn, Mg) and Fluorinated MPc.

2021 
We compute the electronic structure and optical excitation energies of metal-free and transition-metal phthalocyanines (H2Pc and MPc for M = Fe, Co, Ni, Cu, Zn, Mg) using density functional theory with optimally tuned range-separated hybrid functionals (OT-RSH). We show that the OT-RSH approach provides photoemission spectra in quantitative agreement with experiments as well as optical band gaps within 10% of their experimental values, capturing the interplay of localized d-states and delocalized π-π* states for these organometallic compounds. We examine the tunability of MPcs and H2Pc through fluorination, resulting in quasi-rigid shifts of the molecular orbital energies by up to 0.7 eV. Our comprehensive data set provides a new computational benchmark for gas-phase phthalocyanines, significantly improving upon other density-functional-theory-based approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    3
    Citations
    NaN
    KQI
    []