An Analysis of the Microstructure and Mechanical Properties of Rapidly Solidified Al-1Fe-1Ni-5Mg Alloy

2015 
Experiments on Al-1Fe-1Ni-5Mg alloy were performed to determine the effect of rapid solidification (RS) on the material strengthening, which result from the refining of the grain size and intermetallic compounds. Additionally, an enhancement of the material strengthening due to magnesium addition was also observed. RS procedure was performed using spray deposition of the molten alloy on the rotating water-cooled copper roll. As a result, highly refined structure of rapidly solidified flakes was obtained. Using common powder metallurgy (PM) techniques, i.e. cold pressing, vacuum degassing and hot extrusion, as received RS-flakes were consolidated to the bulk PM materials. For comparison purposes, the conventionally cast and hot extruded Al-1Fe-1Ni-5Mg alloy was studied as well. RS process combined with hot pressing and extrusion procedure was found to be very effective method for the manufacture of fine grained material and effective refinement of intermetallic compounds. However some inhomogenity of particles distribution was observed, which was ascribed to varied cooling rate dependent on the particular spray-drop size. Mechanical properties of as-extruded material were examined using compression test at 293K – 873K. High strength and ductility of as-extruded RS material with respect to conventionally produced alloy were observed. However, the effect of enhanced mechanical properties of RS material is observed only at low deformation temperatures. It was found that increasing deformation temperature above 400K results in negligible hardening of RS samples if compared to conventionally produced material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    1
    Citations
    NaN
    KQI
    []