Segmental inertial parameters of the human trunk as determined from computed tomography

1996 
This study used computed tomography (CT) imaging to determinein vivo mass, center of mass (CM), and moments of inertia (Icm) about the CM of discrete segments of the human torso. Four subjects, two males and two females, underwent serial transverse CT scans that were collected at 1-cm intervals for the full length of the trunk. The pixel intensity values of transverse images were correlated to tissue densities, thereby allowing trunk section mass properties to be calculated. The percentage of body mass observed by vertebral levels ranged from 1.1% at T1 to 2.6% at L5. The masses of the upper, middle, and lower trunk segments as percentages of body mass were estimated to be 18.5, 12.2, and 10.7%, respectively. The whole trunk mass was estimated to comprise 41.6% of the total body mass. Transverse vertebral CM values were found to lie anterior to their respective vertebral centroids by up to 5.0 cm in the lower thoracic region. For the upper, middle, and lower trunk segments, the average CM positions were found to be 25.9, 62.5, and 86.9% of the distance from the superior to inferior ends of the trunk. The upper and middle trunk CMs corresponded to approximately 4.0 cm anterior to T7/T8 vertebral centroid levels and 1.0 cm anterior to L3/L4 vertebral centroid levels, respectively. For the whole trunk, the CM was 52.7% of the distance from the xiphoid process and approximately 2.0 cm anterior to L1/L2 vertebral centroid levels. Variations in CM and 1cm values were observed between subject, but these were within the range of previous reports of body segment parameters. Differences from previous studies were attributable to variations in boundary definitions, measurement techniques, population groups, and body states (live versus cadaver) examined. The disparity between previous findings and the findings of this study emphasizes the need to better define the segmental properties of the trunk so that improved biomechanical representation of the body can be achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    185
    Citations
    NaN
    KQI
    []