Noradrenergic Neurons of the Locus Coeruleus Are Phase Locked to Cortical Up-Down States during Sleep

2012 
Nonrapid eye movement (NREM) sleep is characterized by periodic changes in cortical excitability that are reflected in the electroencephalography (EEG) as high-amplitude slow oscillations, indicative ofcortical Up/Downstates.These slowoscillations arethoughttobe involved in NREM sleep-dependent memory consolidation. Although thelocuscoeruleus(LC)noradrenergicsystemisknowntoplayarole inoff-linememoryconsolidation(thatmayoccurduringNREMsleep), cortico--coerulear interactions during NREM sleep have not yet been studied in detail. Here, we investigated the timing of LC spikes as a function of sleep-associated slow oscillations. Cortical EEG was monitored,alongwithactivityofLCneuronsrecordedextracellularly, in nonanesthetized naturally sleeping rats. LC spike-triggered averaging of EEG, together with phase-locking analysis, revealed preferential firing of LC neurons along the ascending edge of the EEG slow oscillation, correlating with Down-to-Up state transition. LC neurons were locked best when spikes were shifted forward ~50 ms in time with respect to the EEG slow oscillation. These results suggest that during NREM sleep, firing of LC neurons may contribute to the rising phase of the EEG slow wave by providing a neuromodulatory input that increases cortical excitability, thereby promoting plasticity within these circuits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    125
    Citations
    NaN
    KQI
    []