Differences in physiology explain succession of mixoplankton functional types and affect carbon fluxes in temperate seas

2021 
Abstract Different hypotheses have been proposed explaining plankton community assembly and how changes in biodiversity can impact ecosystem function. Mixoplankton (photo-phago-trophs) are important members of the plankton, but science lacks a clear understanding of their role in plankton succession. Here, we used a modelling approach to test the hypotheses that: i) differences in the physiology of mixoplankton functional types (MFTs) explain their seasonalities and ii) functional differences affect their roles in key carbon fluxes. Functional differences were modelled based on cell size and whether mixoplankton possess their own, or acquire, photosystems. Ecosystem simulations incorporated realistic environmental variability and were validated against a 9yr long-term time series of nutrients, chlorophyll-a, and plankton data from a coastal temperate sea. Simulations, consistent with empirical data, show that mixoplankton of different sizes are present throughout the water column and over time, with seasonal population dynamics differing among the different MFTs. Importantly, the partitioning of production among different size-classes depends on how mixoplankton functional diversity is described in the model, and that merging mixoplankton into one functional type can mask their diverse ecological roles in carbon cycling. Mixoplankton thus play an important role in structuring the plankton community and its dynamics in the simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    2
    Citations
    NaN
    KQI
    []