Quantum Chemistry Based Computational Study on the Conformational Population of a Neodymium Neodecanoate Complex

2016 
The title complex is widely used as an efficient key component of Ziegler-Natta catalyst for stereospecific polymerization of dienes to produce synthetic rubbers. However, the quantitative structure-activity relationship (QSAR) of this kind of complexes is still not clear mainly due to the difficulties to obtain their geometric molecular structures through laboratory experiments. An alternative solution is the quantum chemistry calculation in which the comformational population shall be determined. In this study, ten conformers of the title complex were obtained with the function of molecular dynamics conformational search in Gabedit 2.4.8, and their geometry optimization and thermodynamics calculation were made with a Sparkle/PM7 approach in MOPAC 2012. Their Gibbs free energies at 1 atm. and 298.15 K were calculated. Population of the conformers was further calculated out according to the theory of Boltzmann distribution, indicating that one of the ten conformers has a dominant population of 77.13%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    1
    Citations
    NaN
    KQI
    []