Identification of Smoke and Sulfuric Acid Aerosol in SAGE III/ISS Extinction Spectra Following the 2019 Raikoke Eruption

2021 
Abstract. The 2019 eruption of Raikoke was the largest volcanic eruption since 2011 and it was coincident with 2 major wildfires in the northern hemisphere. The impact of these events was manifest in the SAGE III/ISS extinction coefficient measurements. As the volcanic aerosol layers moved southward, a secondary peak emerged at an altitude higher than that which is expected for sulfuric acid aerosol. It was hypothesized that this secondary plume may contain a non-negligible amount of smoke contribution. We developed a technique to classify the composition of enhanced aerosol layers as either smoke or sulfuric acid aerosol. This method takes advantage of the different spectral properties of smoke and sulfuric acid aerosol, which is manifest in distinctly different spectral slopes in the SAGE III/ISS data. Herein we demonstrate the utility of this method using 4 case-study events (2018 Ambae eruption, 2019 Ulawun eruption, 2017 Canadian pyroCb, and 2020 Australian pyroCb) and provide corroborative data from the CALIOP instrument before applying it to the Raikoke plumes. We determined that, in the time period following the Raikoke eruption, smoke and sulfuric acid aerosol were present throughout the atmosphere and the 2 aerosol types were preferentially partitioned to higher (smoke) and lower (sulfuric acid) altitudes. Herein, we present an evaluation of the performance of this classification scheme within the context of the aforementioned case-study events followed by a brief discussion of this method's applicability to other events as well as its limitations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []