Digital Signal Processor-Based Power Management System Implementation for a Stand-Alone Microgrid on a Small Island in Korea

2016 
This chapter presents a power management system (PMS) for the control of a stand-alone microgrid that was installed in Mara Island’s microgrid system in Korea. Most stand-alone microgrids can control or confine the start, stop, or output of each distributed generator using the energy management system, but these functions cannot guarantee stability against disturbances that occur transiently and unexpectedly due to their reliance on communications. Therefore, Mara Island’s microgrid system developed and applied a PMS that does not rely on communications to secure the stability of the transient system. The PMS controls controllable active and reactive power, particularly that of energy storage systems, for the controllable active power of a diesel engine. First, we performed a controller hardware-in-the-loop simulation to verify the PMS performance. The microgrid system was modeled in a real-time digital simulator, connecting the PMS designed by a digital signal processor. Second, the PMS was installed in Mara Island’s microgrid system in Korea, which includes a photovoltaic power generation system, a diesel engine, a battery energy storage system, and the PMS. These systems are connected to a 380-V, one-feeder distribution subsystem. The loads of the microgrid usually vary from 40 to 120 kW. The results show that the proposed PMS helps to improve the stability of the stand-alone microgrid. The stability and utilization of the system can be increased by utilizing the PMS in accordance with the purpose of the microgrid system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []