Preliminary Dosimetric Study of Proton Minibeam Radiation Therapy for the Treatment of Choroidal Melanoma

2020 
This study aimed to evaluate dosimetrically the feasibility of saving both the lens and the ciliary body in the treatment of a choroidal melanoma by using spatially fractionated proton minibeams. A multi-slit brass collimator was designed by using Monte Carlo simulation data and was fabricated with a 0.4-mm beam opening and a 1.1-mm center-to-center distance. A phantom was also fabricated for proton beam dosimetry, involving five polymethylmethacrylate (PMMA) plates of 2 mm and 8 mm thicknesses, respectively. The peak-to-valley dose ratio (PVDR) of the proton minibeams was used to validate the feasibility of lens and ciliary body sparing. The typical single-scattered proton beam for treating a patient with a choroidal melanoma was delivered to Gafchromic EBT3 films in the phantom after having passed through the multi-slit: the energy of proton beam was 60 MeV, and its depth dose profile was a full spread-out Bragg peak (SOBP). The average dose at mid-depth of the SOBP was approximately 3 CGE with ±3% of ripple. Dosimetric evaluation showed the PVDR depended on the air gap strongly. It varied from 3.4 to 1.1 in the air gap range from 2 mm to 62 mm. The PVDR values at PMMA depths of 2, 12, 22, and 32 mm were 2.0, 1.5, 1.1, and 1.06, respectively. This result shows that a spatially fractionated proton beam might save the lens and ciliary body seated at a shallow depth in the eye ball when a choroidal melanoma is treated using proton minibeam radiotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []