A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth–Fokker–Planck equation

2022 
Abstract Structure-preserving discretization of the Rosenbluth–Fokker–Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth–Fokker–Planck scheme is introduced. The structure related to the energy conservation is skew-symmetry in mathematical sense, and the action–reaction law in physical sense. A thermal relaxation term is obtained by using integration-by-parts on a volume integral in the energy moment equation, so the discontinuous Galerkin method is selected to preserve the skew-symmetry. The discontinuous Galerkin method enables ones to introduce the nonlinear upwind flux without violating the conservation laws. Some experiments show that the conservative scheme maintains the mass-energy-conservation only with round-off errors, and analytic equilibria are reproduced only with truncation errors of its formal accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []