Efficient Zygotic Genome Editing via RAD51-Enhanced Interhomolog Repair

2018 
Abstract Recent advances in genome editing have greatly improved knock-in (KI) efficiency1–9. Searching for factors to further improve KI efficiency for therapeutic use and generation of non-human primate (NHP) models, we found that the strand exchange protein RAD51 can significantly increase homozygous KI using CRISPR/Cas9 in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is well-described in the context of meiosis10, but only occurs at low frequencies in mitotic cells11,12 and its existence in zygotes is controversial. Using a variety of approaches, we provide evidence for an endogenous IHR mechanism in zygotes that can be enhanced by RAD51. We show that this process can be harnessed for generating homozygous KI animals from wildtype zygotes based on exogenous donors and for converting heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we elucidate additional factors that contribute to zygotic IHR and identify a RAD51 mutant capable of insertion-deletion (indel)-free stimulation of IHR. Thus, our study provides conclusive evidence for the existence of zygotic IHR and demonstrates methods to enhance IHR for potential use in gene drives, gene therapy, and biotechnology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    13
    Citations
    NaN
    KQI
    []