Role of the hydrogen plasma treatment in layer-by-layer deposition of microcrystalline silicon

1997 
We have investigated the role of hydrogen in hydrogenated microcrystalline silicon (μc-Si:H) formation using hydrogen plasma treatments, in particular examining the possibility of subsurface reaction due to permeating hydrogen atoms, which leads to the crystallization of hydrogenated amorphous silicon (a-Si:H). It is demonstrated that the hydrogen plasma treatment of a-Si:H film on the anode using a cathode covered by a-Si:H film, which is inevitably coated during the deposition period, gives rise to the deposition of μc-Si:H over the a-Si:H layer, i.e., chemical transport takes place. It is also found that the pure hydrogen plasma treatment using a clean cathode induces only etching of the a-Si:H layer. These results imply that the present hydrogen plasma condition does not cause crystallization of a-Si:H but only etching, and that careful experimentation is required to determine the real subsurface reaction due to atomic hydrogen.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    56
    Citations
    NaN
    KQI
    []