Correction of frameshift mutations in the atpB gene by translational recoding in chloroplasts of Oenothera and tobacco.

2020 
Translational recoding, also known as ribosomal frameshifting, is a process that causes ribosome slippage along the messenger RNA, thereby changing the amino acid sequence of the synthesized protein. Whether the chloroplast employs recoding, is unknown. I-iota, a plastome mutant of Oenothera (evening primrose), carries a single adenine insertion in an oligoA stretch of atpB (encoding a {beta}-subunit of the ATP synthase). The mutation is expected to cause synthesis of a truncated, non-functional protein. We report that a full-length AtpB protein is detectable in I-iota leaves, suggesting operation of a recoding mechanism. To characterize the phenomenon, transplastomic tobacco lines were generated, in which the atpB reading frame was altered by insertions or deletions in the oligoA motif. We found that insertion of two adenines was more efficiently compensated than insertion of a single adenine, or deletion of one or two adenines. We further show that homopolymeric composition of the oligoA stretch is essential for recoding. Plants carrying a disrupted oligoA stretch have an albino-phenotype, indicating absence of indel correction. Our work provides evidence for the operation of translational recoding in chloroplasts. Recoding enables correction of frameshift mutations and can restore photoautotrophic growth in mutants that otherwise would be lethal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    0
    Citations
    NaN
    KQI
    []