Phase Evolution and Degradation Modes of R3̅m LixNi1–y–zCoyAlzO2 Electrodes Cycled Near Complete Delithiation

2018 
Practical utilization of energy densities near the theoretical limit for R3m layered oxide positive electrode materials is dependent on the stability of the electrochemical performance of these materials at or near full delithiation. To develop new chemistries and novel approaches toward the improvement of the electrochemical performance of these materials at such high states of charge, a robust understanding of the failure mechanisms limiting current materials is necessary. Thorough analysis of LixCo1–yAlyO2 and LixNi1–yAlyO2 as well as LixNi0.8Co0.2O2 and LixNi0.8Co0.15Al0.05O2 (1 ≥ x ≥ 0 and 0.2 ≥ y ≥ 0) enabled the identification of key relationships between the transition metal chemistry of the electrode, its structural stability, and cycling characteristics at or near complete delithiation (4.75 V). Extensive characterization of these materials was achieved by a multitude of physical and electrochemical techniques to investigate the relative importance of surface vs bulk phenomena. The resulting in...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    17
    Citations
    NaN
    KQI
    []