Multimodal virtual histology of rabbit vocal folds by nonlinear microscopy and nano computed tomography

2019 
Human vocal folds (VFs) possess a unique anatomical structure and mechanical properties for human communication. However, VFs are prone to scarring as a consequence of overuse, injury, disease or surgery. Accumulation of scar tissue on VFs inhibits proper phonation and leads to partial or complete loss of voice, with significant consequences for the patient’s quality of life. VF regeneration after scarring provides a significant challenge for tissue engineering therapies given the complexity of tissue microarchitecture. To establish an effective animal model for VF injury and scarring, new histological methods are required to visualize the wound repair process of the tissue in its three-dimensional native environment. In this work, we propose the use of a combination of nonlinear microscopy and nanotomography as contrast methods for virtual histology of rabbit VFs. We apply these methods to rabbit VF tissue to demonstrate their use as alternatives to conventional VF histology that may enable future clinical studies of this injury model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    5
    Citations
    NaN
    KQI
    []