Highly sensitive fluorescent quantification of acid phosphatase activity and its inhibitor pesticide Dufulin by a functional metal-organic framework nanosensor for environment assessment and food safety.

2022 
Abstract Developing a rapid and accurate strategy of sensing Dufulin is a vital challenge for risk assessment and food crops along with its spreading usage. Herein a dye-encapsulated azoterephthalate metal-organic framework (MOF)-based fluorescent sensing system was designed for Dufulin analysis by acid phosphatase (ACP) enzyme-controlled collapse of MOF framework and subsequent release of the encapsulated dye. The fluorescence intensity of the DMOF/AAP/ACP system was negatively related to the dosage of Dufulin (0 to 5 μg mL-1) with detection limit of 2.96 ng mL-1. The sensing system able to rapidly and sensitively sense the activity of ACP and Dufulin, and was also applicable for assessment of the real samples including paddy water and soil, polished rice and cucumber. Accordingly, this study illustrated the feasibility and the potential of MOF-derived nanosensors for improving pesticide analysis and opening up the design of the enzyme-based probes for pesticide sensing in environmental assessment and food safety.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []