Electromyographical Differences Between the Hyperextension and Reverse-Hyperextension.

2021 
The aims of this study were to compare muscle activation of the erector spinae (ES), gluteus maximus (GMax), and biceps femoris (BF) during the hyperextension (HE) and reverse-HE (RHE) exercises. Ten subjects (age, 23 ± 4 years; height, 175.9 ± 6.9 cm; mass, 75.2 ± 9.7 kg) had electromyography (EMG) electrodes placed on the ES, GMax, and BF muscles in accordance with SENIAM (Surface EMG for Non-Invasive Assessment of Muscles) guidelines. Subjects performed 3 maximum voluntary isometric contraction trials of lumbar extension and hip extension using a handheld and isokinetic dynamometer, respectively, to normalize the EMG during the HE and RHE exercises. Three repetitions of each exercise were executed in a randomized order. High reliability (intraclass correlation coefficient ≥0.925) was observed with low variability (coefficient of variation [CV] < 10%) in all but the GMax during the extension phase of the HE (CV = 10.64%). During the extension and flexion phases, the RHE exhibited significantly greater (p ≤ 0.024; 34.1-70.7% difference) peak EMG compared with the HE in all muscles tested. Similarly, the RHE resulted in significantly greater mean EMG compared with the HE (p ≤ 0.036; 28.2-65.0% difference) in all muscles except the BF during the flexion phase (p = 9.960). Therefore, the RHE could be considered as a higher-intensity exercise for the posterior chain muscles compared with the HE, potentially eliciting greater increases in strength of the posterior chain muscles. [Abstract copyright: Copyright © 2021 National Strength and Conditioning Association.]
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []