Allometric equations for urban ash trees (Fraxinus spp.) in Oakville, Southern Ontario, Canada

2014 
Abstract Tree growth equations are an important and common tool used to effectively assess the yield and determine management practices in forest plantations. Increasingly, they are being developed for urban forests, providing tools to assist urban forest managers with species selection, placement, and estimation of management costs and ecosystem services. This study describes the development of allometric equations for Fraxinus americana and F. pennsylvanica growing in Oakville, Canada. With data collected from 103 ash trees, five allometric models were tested to develop equations estimating diameter-at-breast-height (dbh), tree height, crown width and crown height, using age and dbh as explanatory variables. Mean annual growth rates are presented to demonstrate species growth performance and were not significantly different over the first 40 years of growth for the two species. Of all the tested random coefficient models for both species, the cubic with weight 1/ x provided the best fit for estimating dbh from age. The best models for other parameters were the loglog for crown height from dbh, the quadratic for crown diameter from dbh, and the linear for tree height from dbh for F. americana . Model types showed more consistency for F. pennsylvanica with linear providing the best fit for crown diameter, crown height and tree height from dbh. The number of model types suggests the difficulty of fitting any single model to the vast array of conditions affecting plant growth in urban areas where management practices and environment can significantly influence tree size and growth. These models may be used to estimate the growth of ash tree populations in Oakville and communities with similar climate, soil, planting, and management environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    26
    Citations
    NaN
    KQI
    []