Constraints on $f(R)$ and nDGP Modified Gravity Model Parameters with Cluster Abundances and Galaxy Clustering

2021 
We present forecasted cosmological constraints from combined measurements of galaxy cluster abundances from the Simons Observatory and galaxy clustering from a DESI-like experiment on two well-studied modified gravity models, the chameleon-screened $f(R)$ Hu-Sawicki model and the nDGP braneworld Vainshtein model. A Fisher analysis is conducted using $\sigma_8$ constraints derived from thermal Sunyaev-Zel'dovich (tSZ) selected galaxy clusters, as well as linear and mildly non-linear redshift-space 2-point galaxy correlation functions. We find that the cluster abundances drive the constraints on the nDGP model while $f(R)$ constraints are led by galaxy clustering. The two tracers of the cosmological gravitational field are found to be complementary, and their combination significantly improves constraints on the $f(R)$ in particular in comparison to each individual tracer alone. For a fiducial model of $f(R)$ with $\text{log}_{10}(f_{R0})=-6$ and $n=1$ we find combined constraints of $\sigma(\text{log}_{10}(f_{R0}))=0.48$ and $\sigma(n)=2.3$, while for the nDGP model with $n_{\text{nDGP}}=1$ we find $\sigma(n_{\text{nDGP}})=0.087$. Around a fiducial General Relativity (GR) model, we find a $95\%$ confidence upper limit on $f(R)$ of $f_{R0}\leq5.68\times 10^{-7}$. Our results present the exciting potential to utilize upcoming galaxy and CMB survey data available in the near future to discern and/or constrain cosmic deviations from GR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    1
    Citations
    NaN
    KQI
    []