Roles of endoplasmic reticulum stress in 2,2',4,4'-tetrabromodiphenylether-induced thyroid cell apoptosis and autophagy.

2021 
Abstract Polybrominated diphenyl ethers are known to be toxic and impair thyroid function. However, the underlying molecular mechanisms are not well understood. We constructed a female Sprague-Dawley rat model to evaluate the role of endoplasmic reticulum stress, apoptosis and autophagy in 2,2′,4,4′-tetrabromodiphenylether (PBDE-47) induced thyroid toxicity. In the brain development spurt period (postnatal day 10), rats were treated with PBDE-47 (0, 1, 5, 10 mg/kg bw, i.g). Two addition groups were administered with 4-Phenylbutyric acid, an endoplasmic reticulum stress modulator, to reverse PBDE-47-induced thyroid toxicity. Our results demonstrated that PBDE-47 significantly decreased serum thyroid stimulating hormone levels, induced histologic changes in thyroid tissues, increased the percentage of cell apoptosis and expression levels of C/EBP-homologous protein, caspase 3, glucose-regulated protein 78, inositol-requiring enzyme 1, and autophagy-related proteins Beclin1 and 1A/1B-light chain 3. Besides of decreased serum thyroid stimulating hormone levels, all these changes were reversed by 4-Phenylbutyric acid. Taken together, these data indicate that, PBDE-47 damages the thyroid tissues by triggering endoplasmic reticulum stress, apoptosis and autophagy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    2
    Citations
    NaN
    KQI
    []