Removal of correlated background in high-order harmonic transient absorption spectra with principal component regression

2021 
We demonstrate a 40x mean noise power reduction (NPR) in core-to-valence extreme ultraviolet (XUV) femtosecond transient absorption spectroscopy with a high harmonic generation (HHG) light source. An adaptive iteratively reweighted principal component regression (airPCR) is used to analyze and suppress spectrally correlated HHG intensity fluctuations. The technique requires significantly less user input and leads to a higher mean NPR than a previously introduced edge-pixel PCR method that relies on the manual identification of signal-free spectral regions. Both techniques are applied in a time-resolved XUV absorption study of the 2snp1Po (n ≥ 2) autoionizing Rydberg states of helium, demonstrating sub-10−3 optical density sensitivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []