Theoretical approaches for nanoscale thermoelectric phenomena

2020 
Focus of the chapter is on the theoretical approaches aimed to analyze thermoelectric properties at the nanoscale. We discuss several relevant theoretical approaches for different set-ups of nano-devices providing estimations of the thermoelectric parameters in the linear and non-linear regime, in particular the thermoelectric figure of merit and the power-efficiency trade-off. Moreover, we analyze the role of not only electronic, but also of vibrational degrees of freedom. First, nanoscale thermoelectric phenomena are considered in the quantum coherent regime using the Landauer-Buttiker method and focusing on effects of energy filtering. Then, we analyze the effects of many-body couplings between nano-structure degrees of freedom, such as electron-electron and electron-vibration interactions, which can strongly affect the thermoelectric conversion. In particular, we discuss the enhancement of the thermoelectric figure of merit in the Coulomb blockade regime for a quantum dot model starting from the master equation for charge state probabilities and the tunneling rates through the electrodes. Finally, within the non-equilibrium Green function formalism, we quantify the reduction of the thermoelectric performance in simple models of molecular junctions due to the effects of the electron-vibration coupling and phonon transport at room temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []