Reconciling galaxy cluster shapes, measured by theorists vs observers.

2020 
If properly calibrated, the shapes of galaxy clusters can be used to investigate many physical processes: from feedback and quenching of star formation, to the nature of dark matter. Theorists frequently measure shapes using moments of inertia of simulated particles'. We instead create mock (optical, X-ray, strong- and weak-lensing) observations of the twenty-two most massive ($\sim10^{14.7}\,M_\odot$) relaxed clusters in the BAHAMAS simulations. We find that observable measures of shape are rounder. Even when moments of inertia are projected into 2D and evaluated at matched radius, they overestimate ellipticity by 56\% (compared to observable strong lensing) and 430\% (compared to observable weak lensing). Therefore, we propose matchable quantities and test them using observations of eight relaxed clusters from the {\emph Hubble Space Telescope} and {\emph Chandra X-Ray Observatory}. We also release our HST data reduction and lensing analysis software to the community. In real clusters, the ellipticity and orientation angle at all radii are strongly correlated. In simulated clusters, the ellipticity of inner ($
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    4
    Citations
    NaN
    KQI
    []