Early dietary restriction in rats alters skeletal muscle tuberous sclerosis complex, ribosomal s6 and mitogen-activated protein kinase

2018 
Abstract Intrauterine growth restriction is linked to decreased lean body mass and insulin resistance. The mammalian target of rapamycin (mTOR) regulates muscle mass and glucose metabolism; however, little is known about maternal dietary restriction and skeletal muscle mTOR in offspring. We hypothesized that early dietary restriction would decrease skeletal muscle mass and mTOR in the suckling rat. To test this hypothesis, ab libitum access to food or dietary restriction during gestation followed by postnatal cross-fostering to a dietary-restricted or ad libitum–fed rat dam during lactation generated 4 groups: control (CON), intrauterine dietary restricted (IUDR), postnatal dietary restricted (PNDR), and IUDR+PNDR (IPDR). At day 21, when compared to CON, the IUDR group demonstrated “catchup” growth, but no changes were observed in the mTOR pathway. Despite having less muscle mass than CON and IUDR ( P P P P P  = .01). In conclusion, IPDR and PNDR reduced skeletal muscle mass but did not decrease mTOR. In IPDR and PNDR, a reduction in tuberous sclerosis complex 2 may explain why mTOR was unchanged, whereas, in males, an increase in MAPK with a decrease in rs6 may suggest a block in MAPK signaling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []