On the Origins of Nonradiative Excited State Relaxation in Aryl Sulfoxides Relevant to Fluorescent Chemosensing

2016 
We provide herein a mechanistic analysis of aryl sulfoxide excited state processes, inspired by our recent report of aryl sulfoxide based fluorescent chemosensors. The use of aryl sulfoxides as reporting elements in chemosensor development is a significant deviation from previous approaches, and thus warrants closer examination. We demonstrate that metal ion binding suppresses nonradiative excited state decay by blocking formation of a previously unrecognized charge transfer excited state, leading to fluorescence enhancement. This charge transfer state derives from the initially formed locally excited state followed by intramolecular charge transfer to form a sulfoxide radical cation/aryl radical anion pair. With the aid of computational studies, we map out ground and excited state potential energy surface details for aryl sulfoxides, and conclude that fluorescence enhancement is almost entirely the result of excited state effects. This work expands previous proposals that excited state pyramidal inversio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    14
    Citations
    NaN
    KQI
    []