New orbits of irregular satellites designed for the predictions of stellar occultations up to 2020, based on thousands of new observations

2016 
Gomes-Junior et al. (2015) published 3613 positions for the 8 largest irregular satellites of Jupiter and 1787 positions for the largest irregular satellite of Saturn, Phoebe. These observations were made between 1995 and 2014 and have an estimated error of about 60 to 80 mas. Based on this set of positions, we derived new orbits for the eight largest irregular satellites of Jupiter: Himalia, Elara, Pasiphae, Carme, Lysithea, Sinope, Ananke and Leda. For Phoebe we updated the ephemeris from Desmars et al. (2013) using 75% more positions than the previous one. Due to their orbital characteristics, it is common belief that the irregular satellites were captured by the giant planets in the early Solar System, but there is no consensus for a single model explaining where they were formed. Size, shape, albedo and composition would help to trace back their true origin, but these physical parameters are yet poorly known for irregular satellites. The observation of stellar occultations would allow for the determination of such parameters. Indeed Jupiter will cross the galactic plane in 2019-2020 and Saturn in 2018, improving a lot the chances of observing such events in the near future. Using the derived ephemerides and the UCAC4 catalogue we managed to identify 5442 candidate stellar occultations between January 2016 and December 2020 for the 9 satellites studied here. We discussed how the successful observation of a stellar occultation by these objects is possible and present some potential occultations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    6
    Citations
    NaN
    KQI
    []