Walker: Continuous and Precise Navigation by Fusing GNSS and MEMS in Smartphone Chipsets for Pedestrians

2019 
The continual miniaturization of mass-market sensors built in mobile intelligent terminals has inspired the development of accurate and continuous navigation solution for portable devices. With the release of Global Navigation Satellite System (GNSS) observations from the Android Nougat system, smartphones can provide pseudorange, Doppler, and carrier phase observations of GNSS. However, it is still a challenge to achieve the seamless positioning of consumer applications, especially in environments where GNSS signals suffer from a low signal-to-noise ratio and severe multipath. This paper introduces a dedicated android smartphone application called Walker that integrates the GNSS navigation solution and MEMS (micro-electromechanical systems) sensors to enable continuous and precise pedestrian navigation. Firstly, we introduce the generation of GNSS and MEMS observations, in addition to the architecture of Walker application. Then the core algorithm in Walker is given, including the time-differenced carrier phase improved GNSS single-point positioning and the integration of GNSS and Pedestrian Dead Reckoning (PDR). Finally, the Walker application is tested and the observations of GNSS and MEMS are assessed. The static experiment shows that, with GNSS observations, the RMS (root mean square) values of east, north, and up positioning error are 0.49 m, 0.37 m, and 1.01 m, respectively. Furthermore, the kinematic experiment verifies that the proposed method is capable of obtaining accuracy within 1–3 m for smooth and continuous navigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    7
    Citations
    NaN
    KQI
    []