DOA Estimation with Known Waveforms in the Presence of Unknown Time Delays and Doppler Shifts

2020 
Abstract A novel DOA estimation method for known waveform sources with different unknown time delays and Doppler shifts is proposed. Based on the idea of maximum likelihood and the matrix projection theory, a decoupled cost function is first constructed and then the problem of estimating time delay and Doppler shift is transformed into a nonlinear least squares (NLS) problem. To solve the NLS problem efficiently without multidimensional search, a Toeplitz dominant rule is established to perform initial estimates with a reduced dimension. Finally, with the aid of time delay and Doppler shift estimates, DOAs and complex amplitudes of the incoming signals are obtained. Simulation results show that the proposed method can achieve a performance close to CRB at high SNR and with a large number of snapshots.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []