Long non-coding RNA MEG3 silencing and microRNA-214 restoration elevate osteoprotegerin expression to ameliorate osteoporosis by limiting TXNIP.

2021 
Studies have shown that long non-coding RNA (lncRNA) MEG3 plays a key role in osteoporosis (OP), but its regulatory mechanism is somewhat incompletely clear. Here, we intend to probe into the mechanism of MEG3 on OP development by modulating microRNA-214 (miR-214) and thioredoxin-interacting protein (TXNIP). Rat models of OP were established. MEG3, miR-214 and TXNIP mRNA expression in rat femoral tissues were detected, along with TXNIP, OPG and RANKL protein expression. BMD, BV/TV, Tb.N and Tb.Th in tissue samples were measured. Ca, P and ALP contents in rat serum were also determined. Primary osteoblasts were isolated and cultured. Viability, COL-I, COL-II and COL-Χ mRNA expression, PCNA, cyclin D1, OCN, RUNX2 and osteolix protein expresion, ALP content and activity, and mineralized nodule area of rat osteoblasts were further detected. Dual-luciferase reporter gene and RNA-pull down assays verified the targeting relationship between MEG3, miR-214 and TXNIP. MEG3 and TXNIP were up-regulated while miR-214 was down-regulated in femoral tissues of OP rats. MEG3 silencing and miR-214 overexpression increased BMD, BV/TV, Tb.N, Tb.Th, trabecular bone area, collagen area and OPG expression, and down-regulated RANKL of femoral tissues in OP rats. MEG3 silencing and miR-214 overexpression elevated Ca and P and reduced ALP in OP rat serum, elevated osteoblast viability, differentiation ability, COL-I and COL-Χ expression and ALP activity, and reduced COL-II expression of osteoblasts. MEG3 specifically bound to miR-214 to regulate TXNIP. MEG3 silencing and miR-214 overexpression promote proliferation and differentiation of osteoblasts in OP by down-regulating TXNIP, which further improves OP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []