Thermal conductivity and mechanical performance of hexagonal boron nitride nanosheets-based epoxy adhesives.

2021 
Thermosets possess diverse physical and chemical properties and thus they are widely used in various applications such as electronic packaging, construction, and automotive industries. However, their poor thermal conductivity and weak mechanical performance jeopardize their continual spread in modern industry. In this study, boron nitride nanosheets (BNNSs) were employed to promote both mechanical and thermal properties of epoxy nanocomposites. BNNSs and their epoxy nanocomposites were fabricated usingin situsolvent ultrasonication andin situpolymerization, respectively. Thermal conductivity was enhanced by 153% increment in epoxy/BNNS nanocomposite at 7 wt% in comparison with neat epoxy. In parallel, Young's modulus, lap shear strength, fracture toughness (K1C) and energy release rate (G1C) increased by 69%, 31%, 122% and 118%, respectively at 1 wt% BNNSs. Moreover, fatigue life and strength of lap shear joints were significantly improved upon adding BNNSs. A numerical model of the single lap shear joint was developed to validate the accuracy of the material constants obtained. Epoxy/BNNS nanocomposites exhibited an outstanding mechanical performance as well as high thermal conductivity giving them merits to widen their applications in electronic and automotive industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []