Severe cardiac involvement with preserved truncated dystrophin expression in Becker muscular dystrophy by +1G>A DMD splice-site mutation: a case report.

2020 
Becker muscular dystrophy (BMD) is caused by specific mutations in the DMD gene that causes progressive muscle weakness and primarily affects skeletal and cardiac muscle. Although cardiac involvement is a significant cause of mortality in BMD, the genetic-phenotype correlation for skeletal and cardiac muscles has not been elucidated. Here, we described a 39-year-old man with BMD, who presented with subtle skeletal muscle weakness in the right leg in his 20s and underwent left ventricular restoration for severe dilated cardiomyopathy at the age of 29. He had difficulty climbing stairs after the age of 35. Neither duplication nor deletion of exons was detected by multiplex ligation-dependent probe amplification. A hemizygous c.264 + 1G>A mutation in intron 4 of the DMD was identified by next-generation sequencing. Furthermore, exon 4 skipping of the DMD was confirmed in both skeletal and cardiac muscles evaluated by reverse transcriptase PCR. Endomyocardial and skeletal muscle biopsies revealed dystrophic pathology characterized by muscle fiber atrophy and hypertrophy with a mild degree of interstitial fibrosis. Interestingly, dystrophin immunohistochemistry demonstrated patchy and faint staining of the skeletal muscle membranes but almost normal staining of the cardiac muscle membranes. Western blot analysis revealed a decreased amount of truncated dystrophin in skeletal muscle but surprisingly almost normal amount in cardiac muscle. This case indicates that BMD patients may have severe cardiac dysfunction despite preserved cardiac truncated dystrophin expression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []