Magnetic coupling in Y$_3$Fe$_5$O$_{12}$/Gd$_3$Fe$_5$O$_{12}$ heterostructures.

2021 
Ferrimagnetic Y$_3$Fe$_5$O$_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with other rare earth elements that have a net magnetic moment, we can introduce an additional spin degree of freedom. Here, we study the magnetic coupling in epitaxial Y$_3$Fe$_5$O$_{12}$/Gd$_3$Fe$_5$O$_{12}$ (YIG/GIG) heterostructures grown by pulsed laser deposition. From bulk sensitive magnetometry and surface sensitive spin Seebeck effect (SSE) and spin Hall magnetoresistance (SMR) measurements, we determine the alignment of the heterostructure magnetization through temperature and external magnetic field. The ferromagnetic coupling between the Fe sublattices of YIG and GIG dominates the overall behavior of the heterostructures. Due to the temperature dependent gadolinium moment, a magnetic compensation point of the total bilayer system can be identified. This compensation point shifts to lower temperatures with increasing thickness of YIG due the parallel alignment of the iron moments. We show that we can control the magnetic properties of the heterostructures by tuning the thickness of the individual layers, opening up a large playground for magnonic devices based on coupled magnetic insulators. These devices could potentially control the magnon transport analogously to electron transport in giant magnetoresistive devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []