Molecular identification of sixty-three amacrine cell types completes a mouse retinal cell atlas

2020 
Amacrine cells (ACs) are a diverse class of interneurons that modulate input from photoreceptors to retinal ganglion cells (RGCs), rendering each RGC type selectively sensitive to particular visual features, which are then relayed to the brain. While many AC types have been identified morphologically and physiologically, they have not been comprehensively classified or molecularly characterized. We used high-throughput single-cell RNA sequencing (scRNA-seq) to profile >32,000 ACs from mouse retina, and applied computational methods to identify 63 AC types. We identified molecular markers for each type, and used them to characterize the morphology of multiple types. We show that they include nearly all previously known AC types as well as many that had not been described. Consistent with previous studies, most of the AC types express markers for the canonical inhibitory neurotransmitters GABA or glycine, but several express neither or both. In addition, many express one or more neuropeptides, and two express glutamatergic markers. We also explored transcriptomic relationships among AC types and identified transcription factors expressed by individual or multiple closely related types. Noteworthy among these were Meis2 and Tcf4, expressed by most GABAergic and most glycinergic types, respectively. Together, these results provide a foundation for developmental and functional studies of ACs, as well as means for genetically accessing them. Along with previous molecular, physiological and morphological analyses, they establish the existence of at least 130 neuronal types and nearly 140 cell types in mouse retina.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    8
    Citations
    NaN
    KQI
    []