TCF7L2 rs290487 C allele aberrantly enhances hepatic gluconeogenesis through allele-specific changes in transcription and chromatin binding.

2020 
In this study, we investigated the mechanisms underlying the altered hepatic glucose metabolism and enhanced diabetes risk in individuals with the TCF7L2 rs290487 C allele. Analysis of 195 cirrhotic patients revealed a higher insulin resistance index and incidence of hepatogenous diabetes in patients with the rs290487 C/C genotype compared to those with the C/T or T/T genotype. The in vitro experiments using targeted mutant PLC-PRF-5 cell line showed that cells with the rs290487 C/C genotype (C/C cells) had higher glucose production, lower glucose uptake, and lower TCF7L2 mRNA and protein levels than those with the C/T genotype (C/T cells). Integrated multi-omics analysis of ChIP-seq, ATAC-seq, RNA-seq, and metabolomics data showed genome-wide alterations in the DNA binding affinity of TCF7L2 in the C/C cells, including gain (e.g., PFKP and PPARGC1A) and loss (e.g., PGK1 and PGM1) of binding sites in several glucose metabolism-related genes. These allele-specific changes in transcriptional regulation lead to increased expression of gluconeogenesis-related genes (PCK1, G6PC and PPARGC1A) and their downstream metabolites (oxaloacetate and β-D-fructose 2,6-bisphosphate). These findings demonstrate that the TCF7L2 rs290487 C allele enhances gluconeogenesis through allele-specific changes in transcription and chromatin binding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []