Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control

2018 
The dielectric barrier discharge (DBD) plasma actuator has in the last decade emerged as an active flow control device. This paper investigates the experimental measurements concerning the instantaneous ionic wind velocity induced by DBD plasma actuator in quiescent air at atmospheric pressure. A parametric study has also been undertaken to find a realistic means of increasing the velocity of the ionic wind. The electrical and mechanical characteristics of the plasma actuator have been studied under different conditions. The aim of this article is to find ways of optimizing the geometrical and electrical parameters to obtain more effective ionic wind for flow control. The results show that increments in the excitation frequency, leads to maximum velocity at the nearer position of the surface. Further analysis show that the frequency of the vortices produced by the related actuators is exactly the same as the excitation frequency of the applied voltage. It was also found that an increase in the duty cycle correspondingly increases the power of the produced vortex shedding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    7
    Citations
    NaN
    KQI
    []