The Nonfragile Controller with Covariance Constraint for Stable Motion of Quadruped Search-Rescue Robot

2014 
The problem of a stable motion for the quadruped search-rescue robots is described as a variance constrained uncertainty in the discrete systems. According to the model structure of the quadruped search-rescue robot, the kinematics of the robot is analyzed on the basis of the D-H parameter. Each joint of the robot angular velocity is planned using the Jacobian matrix, because the angular velocity is directly related to the stability of walking based on the ADAMS simulation. The nonfragile control method with the covariance constraint is proposed for the gait motion control of the quadruped search-rescue robot. The motion state feedback controller and the covariance upper bounds can be given by the solutions of the linear matrix inequalities (LMI), which makes the system satisfy the covariance constrain theory. The results given by LMI indicate that the proposed control method is correct and effective.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    6
    Citations
    NaN
    KQI
    []