Accelerating Edge Intelligence via Integrated Sensing and Communication

Realizing edge intelligence consists of sensing, communication, training, and inference stages. Conventionally, the sensing and communication stages are executed sequentially, which results in excessive amount of dataset generation and uploading time. This paper proposes to accelerate edge intelligence via integrated sensing and communication (ISAC). As such, the sensing and communication stages are merged so as to make the best use of the wireless signals for the dual purpose of dataset generation and uploading. However, ISAC also introduces additional interference between sensing and communication functionalities. To address this challenge, this paper proposes a classification error minimization formulation to design the ISAC beamforming and time allocation. Globally optimal solution is derived via the rank-1 guaranteed semidefinite relaxation, and performance analysis is performed to quantify the ISAC gain. Simulation results are provided to verify the effectiveness of the proposed ISAC scheme. Interestingly, it is found that when the sensing time dominates the communication time, ISAC is always beneficial. However, when the communication time dominates, the edge intelligence with ISAC scheme may not be better than that with the conventional scheme, since ISAC introduces harmful interference between the sensing and communication signals.
    • Correction
    • Source
    • Cite
    • Save