Electronic Correlation Effects and the Coulomb Gap at Finite Temperature

2001 
We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type Germanium, using tunneling spectroscopy on mechanically controllable break junctions. The tunnel conductance was measured as a function of energy and temperature. At low temperatures, the spectra reveal a minimum at zero bias voltage due to the Coulomb gap. In the temperature range above 1 K the Coulomb gap is filled by thermal excitations. This behavior is reflected in the temperature dependence of the variable-range hopping resitivity measured on the same samples: Up to a few degrees Kelvin the Efros-Shkovskii ln$R \propto T^{-1/2}$ law is obeyed, whereas at higher temperatures deviations from this law are observed, indicating a cross-over to Mott's ln$R \propto T^{-1/4}$ law. The mechanism of this cross-over is different from that considered previously in the literature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    39
    Citations
    NaN
    KQI
    []