Functional conservation of Drosophila FTZ-F1 and its mammalian homologs suggests ligand-independent regulation of NR5A family transcriptional activity.

2013 
Drosophila Ftz-F1 is an orphan nuclear receptor required for segmentation and metamorphosis. Its mammalian orthologs, SF-1 and LRH-1, function in sexual development and homeostasis, and have been implicated in stem cell pluripotency maintenance and tumorigenesis. These NR5A family members bind DNA as monomers and strongly activate transcription. However, controversy exists as to whether their activity is regulated by ligand-binding. Structural evidence suggested that SF-1 and human LRH-1 bind regulatory ligands, but mouse LRH-1 and Drosophila FTZ-F1 are active in the absence of ligand. We found that Dm-Ftz-F1 and mLRH-1, thought not to bind ligand, or mSF-1 and hLRH-1, predicted to bind ligand, each efficiently rescued the defects of Drosophila ftz-f1 mutants. Further, each correctly activated expression of a Dm-Ftz-F1 target gene in Drosophila embryos. The functional equivalence of ftz-f1 orthologs in these sensitive in vivo assays argues against specific activating ligands for NR5A family members.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    13
    Citations
    NaN
    KQI
    []