Step-scheme BiVO4/WO3 heterojunction photocatalyst under visible LED light irradiation removing 4-chlorophenol in aqueous solutions.

2021 
Abstract In the present study, photodegradation of 4-chlorophenol (4-CP) using a step-scheme BiVO4/WO3 heterostructure under visible LED light irradiation (Vis LED) from aqueous solutions was investigated. The photocatalyst was synthesized through the hydrothermal process and characterized physically and chemically via X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and Brunnauer–Emmett–Teller (BET) techniques. The effects of the operational parameters i.e., solution pH, contact time, nanocomposite dosage, and initial 4-CP concentration were evaluated. Results indicated that BiVO4/WO3/Vis LED process has higher efficiency in 4-CP degradation than BiVO4/Vis LED, WO3/Vis LED, and BiVO4/WO3 systems. At BiVO4/WO3 concentration of 0.125 g/L, initial pH of 7, and initial 4-CP concentration of 25 mg/L, complete degradation of 4-CP (>97%) was achieved in reaction time of 60 min. The phenol, chlorobenzene, catechol, 4-chlorocatechol, 5-chloro-1,2,4-benzenetriol, hydroquinone, hydroxyhydroquinone, p-benzoquinone, o-benzoquinone, formic acid, acetic acid, and oxalic acid were identified as the major intermediates of 4-CP degradation. In optimal condition, 67.5% and 88.5% of TOC and COD removal rates were obtained in 120 min contact time, respectively. The degradation of 4-CP was pseudo-first-order kinetics. Through the use of tert-Butyl alcohol (TBA) and ethylenediamine tetraacetic acid (EDTA) as radical scavengers, hydroxyl radicals and holes were identified as the main active species in photocatalytic degradation. Also, a tentative pathway for 4-CP degradation using the Vis LED/BiVO4/WO3 process was proposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []