Quantification of Tumor Protein Biomarkers from Lung Patient Serum Using Nanoimpact Electrochemistry.

2021 
Protein quantification with high throughput and high sensitivity is essential in the early diagnosis and elucidation of molecular mechanisms for many diseases. Conventional approaches for protein assay often suffer from high costs, long analysis time, and insufficient sensitivity. The recently emerged nanoimpact electrochemistry (NIE), as a contrast, allows in situ detection of analytes one at a time with simplicity, fast response, high throughput, and the potential of reducing the detection limits down to the single entity level. Herein, we propose a NIE-enabled electrochemical immunoassay using silver nanoparticles (AgNPs) as labels for the detection of CYFRA21-1, a typical protein marker for lung carcinoma. This strategy is based on the measurement of the impact frequency and the charge intensity of the electrochemical oxidation of individual AgNPs before and after they are modified with anti-CYFRA21-1 and in turn immunocomplexed with CYFRA21-1. Both the frequency and intensity modes of single-nanoparticle electrochemistry correlate well with each other, resulting in a self-validated immunoassay that provides linear ranges of two orders of magnitude and a limit of detection of 0.1 ng/mL for CYFRA21-1 analysis. The proposed immunoassay also exhibits excellent specificity when challenged with other possible interfering proteins. In addition, the CYFRA21-1 content is validated by a conventional, well-known enzyme-linked immunosorbent assay and successfully quantified in a diluted healthy serum with a satisfactory recovery. Moreover, CYFRA21-1 detection in serum samples of lung cancer patients is successfully demonstrated, suggesting the feasibility of the NIE-based immunoassay in clinically relevant diagnosis. To the best of our knowledge, this is the first report to construct NIE-based electrochemical immunoassays for the specific detection of tumor protein biomarkers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []