VIBRO-ACOUSTIC OPTIMIZATION OF A PERMANENT MAGNET SYNCHRONOUS MACHINE USING THE EXPERIMENTAL DESIGN METHOD

2006 
The aim of this paper is to use an analytical multi-physical model—electromagnetic, mechanic, and acoustic—in order to predict the electromagnetic noise of a permanent magnet synchronous machine (PMSM). Afterward, the experimental design method, with a particular design: “trellis design,” is used to build response surfaces of the noise with respect to the main factors. These surfaces can be used to find the optimal design or more simply, to avoid unacceptable designs of the machine, in term of noise for a variable speed application. Introduction The majority of the electric machines operate at variable speed. In most of cases, it involves a generation of noise and vibrations, for a given speed and frequency. For industries of manufacture, but also with the increasingly rigorous European standards, it is necessary to take into account the noise and the vibrations from the design stage. A classical method used to study electromagnetic phenomena is the finite element method (FEM) in magneto-dynamics including the coupling with electrical circuits. However, in the case of strong coupling, taking into account the electromagnetic, vibro-acoustic, and thermic models in the same time would need a considerable computing effort. This would make the structure optimization practically impossible. In order to solve this problem, an analytical approach is considered instead. The aim of this work is to develop and use an analytical multi-physical model— electromagnetic, mechanic, and acoustic—of a synchronous machine with permanent magnets. The complete model is coded using the data-processing tool MATLAB R ©, making possible the determination of fast and simple prediction models of the acoustic noise. S. Wiak, M. Dems, K. Komeza (eds.), Recent Developments of Electrical Drives, 101–114. C © 2006 Springer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    4
    Citations
    NaN
    KQI
    []