Mathematical Models and Biological Meaning: Taking Trees Seriously

2008 
We compare three basic kinds of discrete mathematical models used to portray phylogenetic relationships among species and higher taxa: phylogenetic trees, Hennig trees and Nelson cladograms. All three models are trees, as that term is commonly used in mathematics; the difference between them lies in the biological interpretation of their vertices and edges. Phylogenetic trees and Hennig trees carry exactly the same information, and translation between these two kinds of trees can be accomplished by a simple algorithm. On the other hand, evolutionary concepts such as monophyly are represented as different mathematical substructures are represented differently in the two models. For each phylogenetic or Hennig tree, there is a Nelson cladogram carrying the same information, but the requirement that all taxa be represented by leaves necessarily makes the representation less efficient. Moreover, we claim that it is necessary to give some interpretation to the edges and internal vertices of a Nelson cladogram in order to make it useful as a biological model. One possibility is to interpret internal vertices as sets of characters and the edges as statements of inclusion; however, this interpretation carries little more than incomplete phenetic information. We assert that from the standpoint of phylogenetics, one is forced to regard each internal vertex of a Nelson cladogram as an actual (albeit unsampled) species simply to justify the use of synapomorphies rather than symplesiomorphies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    18
    Citations
    NaN
    KQI
    []