Schwinger effect and false vacuum decay as quantum-mechanical tunneling of a relativistic particle

2020 
We present a simple and intuitive description of both, Schwinger effect and false vacuum decay through bubble nucleation, as tunneling problems in one-dimensional relativistic quantum mechanics. Both problems can be described by an effective potential that depends on a single variable of dimension length, which measures the separation of the particles in the Schwinger pair, or the radius of a bubble for the vacuum decay. We show that both problems can be described as tunneling in one-dimensional quantum mechanics if one interprets this variable as the position of a relativistic particle with a suitably defined effective mass. The same bounce solution can be used to obtain reliable order of magnitude estimates for the rates of Schwinger pair production and false vacuum decay.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []