Random Order Vertex Arrival Contention Resolution Schemes for Matching, with Applications

2021 
With a wide range of applications, stochastic matching problems have been studied in different models, including prophet inequality, Query-Commit, and Price-of-Information. While there have been recent breakthroughs in all these settings for bipartite graphs, few non-trivial results are known for general graphs. In this paper, we study the random order vertex arrival contention resolution scheme for matching in general graphs, which is inspired by the recent work of Ezra et al. (EC 2020). We design an 8/15-selectable batched RCRS for matching and apply it to achieve 8/15-competitive/approximate algorithms for all the three models. Our results are the first non-trivial results for random order prophet matching and Price-of-Information matching in general graphs. For the Query-Commit model, our result substantially improves upon the 0.501 approximation ratio by Tang et al. (STOC 2020). We also show that no batched RCRS for matching can be better than 1/2+1/(2e²) ≈ 0.567-selectable.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []