Human norovirus binding to select bacteria representative of the human gut microbiota

2017 
Recent reports describe the ability of select bacterial strains to bind human norovirus, although the specificity of such interactions is unknown. The purpose of this work was to determine if a select group of bacterial species representative of human gut microbiota bind to human norovirus, and if so, to characterize the intensity and location of that binding. The bacteria screened included naturally occurring strains isolated from human stool (Klebsiella spp., Citrobacter spp., Bacillus spp., Enterococcus faecium and Hafnia alvei) and select reference strains (Staphylococcus aureus and Enterobacter cloacae). Binding in PBS was evaluated to three human norovirus strains (GII.4 New Orleans 2009 and Sydney 2012, GI.6) and two surrogate viruses (Tulane virus and Turnip Crinkle Virus (TCV)) using a suspension assay format linked to RT-qPCR for quantification. The impact of different overnight culture media prior to washing on binding efficiency in PBS was also evaluated, and binding was visualized using transmission electron microscopy. All bacteria tested bound the representative human norovirus strains with high efficiency ( 90% binding efficiency) (p>0.05); there was selective binding for Tulane virus and no binding observed for TCV. Binding efficiency was highest when bacteria were cultured in minimal media ( 90% bound), but notably decreased when cultured in enriched media (1–3 log10 unbound or 0.01 –<90% bound)) (p<0.05). The norovirus-bacteria binding occurred around the outer cell surfaces and pili structures, without apparent localization. The findings reported here further elucidate and inform the dynamics between human noroviruses and enteric bacteria with implications for norovirus pathogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    63
    Citations
    NaN
    KQI
    []